Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Huan-Yu Wang, Shan Gao,* Li-Hua Huo and Jing-Gui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.026$
$w R$ factor $=0.075$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[diaqua(1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$)-manganese(II)]- μ-acetylenedicarboxylato- $\left.\kappa^{2} O: O^{\prime}\right]$

In the title complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, each $\mathrm{Mn}^{\text {II }}$ ion is octahedrally coordinated by two N atoms of a $1,10-$ phenanthroline ligand, two carboxylate O atoms of different acetylenedicarboxylate (ace^{2-}) ligands and two coordinated water molecules, and the octahedral units are connected by ace ${ }^{2-}$ bridges, which adopt a bis-monodentate coordination mode, to form a one-dimensional structure along the [101] direction. A three-dimensional supramolecular architecture is constructed via hydrogen-bond and $\pi-\pi$ interactions.

Comment

The construction of coordination polymers and networks by the self-assembly of organic ligands and metal ions is a rapidly growing area of reaseach (Evans \& Lin, 2002). Recently, many new complexes have been synthesized using acetylenedicarboxylate to combine with specific transition metal ions (Stein \& Ruschewitz, 2005), and hence this ligand can be regard as a good candidate to fabricate coordination polymers. To our knowledge, some transition metal complexes with onedimensional chain structures of $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$ and Cd (Pantenburg \& Ruschewitz, 2002; Hohn et al., 2002; Billetter et al., 2003; Ruschewitz \& Pantenburg, 2002) have been reported to date. However, compared with the extensively investigated transition metal cordination polymers, there are relatively few reports of metal-organic frameworks constructed with acetylenedicarboxylate by introducing neutral N-heterocyclic ligands. In order to explore further the behaviour of this ligand, we have obtained the title new manganese complex, $\left[\mathrm{Mn}(\text { ace })(\text { phen })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ (phen is 1,10 -phenanthroline and ace^{2-} is acetylenedicarboxylate dianion), (I).

As shown in Fig. 1, complex (I) is an infinite one-dimensional chain polymer, with one $\mathrm{Mn}^{\mathrm{II}}$ ion, one ace ${ }^{2-}$ ligand, one

Figure 1
The asymmetric unit, extended to complete the Mn coordination, of the title complex, with displacement ellipsoids drawn at the 30% probability level. The dashed line indicates a hydrogen bond. [Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.

Figure 2
The packing of (I), projected along the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in these interactions have been omitted.
phen ligand and two coordinated water molecules in the asymmetric unit. The $\mathrm{Mn}^{\mathrm{II}}$ ion is coordinated by two carboxylate O atoms of two ace ${ }^{2-}$ ligands $[\mathrm{Mn} 1-\mathrm{O} 1=$ 2.1647 (12) \AA and $\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{i}}=2.145$ (12) \AA; symmetry code: (i) $\left.x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}\right]$, two N atoms of one phen ligand [Mn1$\mathrm{N} 1=2.2571$ (13) \AA and $\mathrm{Mn} 1-\mathrm{N} 2=2.2792$ (13) $\AA]$, and two coordinated water molecules $[\mathrm{Mn} 1-\mathrm{O} 1 W=2.1485$ (13) \AA and $\mathrm{Mn} 1-\mathrm{O} 2 W=2.2013(12) \AA$], showing a distorted octahedral geometry. (Table 2 and Fig. 2). Each quasi-linear ace ${ }^{2-}$ anion coordinates to $\mathrm{Mn}^{\mathrm{II}}$ ions in a bis-monodentate coordination mode, linking the $\mathrm{Mn}^{\text {II }}$ ions into a one-dimensional chain along the [101] direction. The dihedral angle between the two chelating phen ligands around two adjacent $\mathrm{Mn}^{\mathrm{II}}$ ions is $40.94(5)^{\circ}$.

The angle between the coordinated water molecules is $90.64(5)^{\circ}$, and this orientation plays a crucial role in forming a
high-dimensional hydrogen-bond network. Thus, adjacent chains are connected by hydrogen bonds into a layer, with $\mathrm{O} \cdots \mathrm{O}$ distances in the range 2.6701 (17)-2.7890 (16) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles in the range 152 (2)-177 (2) ${ }^{\circ}$. In addition, the layers are connected via $\pi-\pi$ interactions between one of the rings of the phen ligand (C7-C10/N2/C11) and a symmetry-related ring at $(-x, 1-y, 1-z)$, with a centroid-tocentroid distance of $3.6247 \AA$, thus forming a three-dimensional supramolecular network.

Experimental

Complex (I) was synthesized by the addition of $\mathrm{MnCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.234 \mathrm{~g}$, $1 \mathrm{mmol})$ and phen $(0.198 \mathrm{~g}, 1 \mathrm{mmol})$ to an ethanol-water $(1: 1 \mathrm{v} / \mathrm{v})$ solution $(20 \mathrm{ml})$ of acetylenedicarboxylic acid $(0.144 \mathrm{~g}, 1 \mathrm{mmol})$. The pH of the solution was adjusted to 7 with 1.0 M NaOH solution. After the mixture had been stirred for 30 min , the residue was filtered. The filtrate was allowed to evaporate at room temperature and yellow crystals of (I) were obtained after about 7 d. Analysis, calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{MnN}_{2} \mathrm{O}_{6}$: C 50.15 , H 3.16, N 7.31%; found: C 50.08 , H 3.12, N7.29\%.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=383.22$
Monoclinic, $P 2_{1} / n$
$a=13.764$ (3) \AA
$b=8.2793$ (17) \AA
$c=14.218$ (3) \AA
$\beta=97.24$ (3) ${ }^{\circ}$
$V=1607.3(6) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID areadetector diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\text {min }}=0.753, T_{\text {max }}=0.814$
$Z=4$
$D_{x}=1.584 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.86 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.35 \times 0.32 \times 0.25 \mathrm{~mm}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0406 P)^{2}\right. \\
& \quad+0.3898 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.839 (9)	2.011 (11)	2.7781 (18)	152 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 2^{\text {ii }}$	0.845 (9)	1.826 (10)	2.6701 (17)	177 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 4^{\text {iii }}$	0.853 (9)	1.940 (10)	2.7890 (16)	173.0 (17)
$\mathrm{O} 2 W-\mathrm{H} 2 \mathrm{~W} 2 \cdots \mathrm{O} 2$	0.851 (9)	2.011 (10)	2.8042 (17)	154.7 (17)
Symmetry codes: $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$	$x+\frac{1}{2}$,	, $z+\frac{1}{2} ; \quad$ (ii)	$-x+\frac{1}{2}, y$	+ $\frac{1}{2}$; (iii)

Water H atoms were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (1) and 1.39 (1) \AA, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were refined in the riding-model approximation.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Heilongjiang Province Natural Science Foundation (grant No. B200501) and the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036) for supporting this study.

References

Billetter, H., Hohn, F., Pantenburg, I. \& Ruschewitz, U. (2003). Acta Cryst. C59, m130-m131.
Evans, O. R. \& Lin, W. (2002). Acc. Chem. Res. 35, 511-522.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hohn, F., Billetter, H., Pantenburg, I. \& Ruschewitz, U. (2002). Z. Naturforsch. Teil B, 57, 1375-1381.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Pantenburg, I. \& Ruschewitz, U. (2002). Z. Anorg. Allg. Chem. 628, 1697-1702.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Akishima, Tokyo, Japan.
Ruschewitz, U. \& Pantenburg, I. (2002). Acta Cryst. C58, m483-m484.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stein, I. \& Ruschewitz, U. (2005). Acta Cryst. E61, m2680-m2682.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

